Bernstein–Bézier bases for tetrahedral finite elements
نویسندگان
چکیده
منابع مشابه
Nonconforming Tetrahedral Mixed Finite Elements for Elasticity
This paper presents a nonconforming finite element approximation of the space of symmetric tensors with square integrable divergence, on tetrahedral meshes. Used for stress approximation together with the full space of piecewise linear vector fields for displacement, this gives a stable mixed finite element method which is shown to be linearly convergent for both the stress and displacement, an...
متن کاملTetrahedral and hexahedral invertible finite elements
We review an algorithm for the finite element simulation of elastoplastic solids which is capable of robustly and efficiently handling arbitrarily large deformation. In fact, the model remains valid even when large parts of the mesh are inverted. The algorithm is straightforward to implement and can be used with any material constitutive model, and for both volumetric solids and thin shells suc...
متن کاملSuperconvergence of Tetrahedral Linear Finite Elements
In this paper, we show that the piecewise linear finite element solution uh and the linear interpolation uI have superclose gradient for tetrahedral meshes, where most elements are obtained by dividing approximate parallelepiped into six tetrahedra. We then analyze a post-processing gradient recovery scheme, showing that the global L2 projection of ∇uh is a superconvergent gradient approximatio...
متن کاملNonconforming tetrahedral finite elements for fourth order elliptic equations
This paper is devoted to the construction of nonconforming finite elements for the discretization of fourth order elliptic partial differential operators in three spatial dimensions. The newly constructed elements include two nonconforming tetrahedral finite elements and one quasi-conforming tetrahedral element. These elements are proved to be convergent for a model biharmonic equation in three...
متن کاملDivergence-free finite elements on tetrahedral grids for k≥6
It was shown two decades ago that the Pk-Pk−1 mixed element on triangular grids, approximating the velocity by the continuous Pk piecewise polynomials and the pressure by the discontinuous Pk−1 piecewise polynomials, is stable for all k ≥ 4, provided the grids are free of a nearly-singular vertex. The problem with the method in 3D was posted then and remains open. The problem is solved partiall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2018
ISSN: 0045-7825
DOI: 10.1016/j.cma.2018.05.034