Bernstein–Bézier bases for tetrahedral finite elements

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonconforming Tetrahedral Mixed Finite Elements for Elasticity

This paper presents a nonconforming finite element approximation of the space of symmetric tensors with square integrable divergence, on tetrahedral meshes. Used for stress approximation together with the full space of piecewise linear vector fields for displacement, this gives a stable mixed finite element method which is shown to be linearly convergent for both the stress and displacement, an...

متن کامل

Tetrahedral and hexahedral invertible finite elements

We review an algorithm for the finite element simulation of elastoplastic solids which is capable of robustly and efficiently handling arbitrarily large deformation. In fact, the model remains valid even when large parts of the mesh are inverted. The algorithm is straightforward to implement and can be used with any material constitutive model, and for both volumetric solids and thin shells suc...

متن کامل

Superconvergence of Tetrahedral Linear Finite Elements

In this paper, we show that the piecewise linear finite element solution uh and the linear interpolation uI have superclose gradient for tetrahedral meshes, where most elements are obtained by dividing approximate parallelepiped into six tetrahedra. We then analyze a post-processing gradient recovery scheme, showing that the global L2 projection of ∇uh is a superconvergent gradient approximatio...

متن کامل

Nonconforming tetrahedral finite elements for fourth order elliptic equations

This paper is devoted to the construction of nonconforming finite elements for the discretization of fourth order elliptic partial differential operators in three spatial dimensions. The newly constructed elements include two nonconforming tetrahedral finite elements and one quasi-conforming tetrahedral element. These elements are proved to be convergent for a model biharmonic equation in three...

متن کامل

Divergence-free finite elements on tetrahedral grids for k≥6

It was shown two decades ago that the Pk-Pk−1 mixed element on triangular grids, approximating the velocity by the continuous Pk piecewise polynomials and the pressure by the discontinuous Pk−1 piecewise polynomials, is stable for all k ≥ 4, provided the grids are free of a nearly-singular vertex. The problem with the method in 3D was posted then and remains open. The problem is solved partiall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2018

ISSN: 0045-7825

DOI: 10.1016/j.cma.2018.05.034